Just-in-Time Logic Enforcement

Anew paradigm of combining statisticaland symbolic reasoning for network management

Hongyu He

Princeton University

ABSTRACT

Managing computer networks is increasingly complex. While
machine learning offers scalability and can learn from unla-
beled data, it remains error-prone, even making mistakes ob-
vious to humans. This challenge is frustrating in networking,
which is governed by clear logic rules. Prior attempts to com-
bine ML with logic fall short: they handle only simple rules, de-
mand retraining or heavy engineering per task, and still either
compromise fidelity or offer no rule compliance guarantees.

In this paper, we argue that the most effective way to com-
bine ML with logic is to enforce logic during inference (or
Just-In-Time) rather than during training or post-generation.
This approach decouples logic extraction and enforcement
from ML design and training, allowing more expressive rules
with little engineering overhead and achieving a better trade-
off between fidelity and compliance guarantees.

To demonstrate the potential of Just-In-Time Logic En-
forcement, we design LeJIT, a proof-of-concept framework
that transforms the same GPT-2 model into either a synthetic
data generator or a telemetry imputer by applying differ-
ent sets of logic rules at inference time. At its core, LeJIT
interleaves an SMT solver into the LLM’s inference process,
guiding generation step-by-step to enforce domain-specific
rules. By performing on par with task-specific systems, LeJIT
offers early evidence that logic-driven inference may be the
key to harnessing ML in networking—and opens the door to
imagining a foundation model for networking that we can
shape through logic rules, rather than costly retraining or
task-specific architectures.

1 INTRODUCTION

Machine learning (ML), and large language models (LLMs) in
particular, hold promise for simplifying network management
from router configuration [31] and intent translation [50], to
incident response [18] and scheduling [20, 52], thanks to their
ability to learn from unlabeled data of various modalities
such as traffic traces [7], time series [29], and even RFCs [40].
However, network operators remain skeptical, as these mod-
els often hallucinate [11, 21, 41, 61] or struggle to follow
rules[3,9,23,24], making mistakes that a human expert would
never make. They are also highly data-hungry, and training or
even fine-tuning them is resource-intensive. Initial hopes for
a universal model that could handle diverse networking tasks

Maria Apostolaki

Princeton University

without increasing training costs are fading, as we increas-
ingly see specialized, task-specific solutions [22, 27, 42, 59].

Unlike fields such as biology, networking is entirely human-
engineered, not a natural phenomenon: almost every bit trans-
mitted reflects deliberate choices in protocol design, hardware,
and software. Solely relying on ML to infer all this structure
from data (and then criticizing it when it fails to replicate or
predict behaviors well-understood by experts) is ill-conceived
at best. As prior work has noted, a natural solution is to com-
bine ML with logic [6, 15, 60], i.e., explicit rules. Existing
approaches typically follow one of two design paradigms.
On one end, logic can be taught through training, i.e., pre-
inference. For example, Zoom2Net [16] augments the loss
function with logic constraints inspired by physics-informed
neural networks [8,37]. While this approach s efficient at run-
time, it requires re-training, white-box access to the model,
limits rules to differentiable forms, and most importantly,
does not guarantee rule compliance during inference. On the
other end, logic can be enforced after inference. NetDiffu-
sion [24] takes this route, applying rule-based corrections
post-generation to fix invalid outputs. This method is model-
agnostic and supports more expressive rules, but it may fail to
find a valid correction [23], as often observed in NetDiffusion,
which relies on a deterministic one-pass algorithm.

This paper argues that logic should guide ML during infer-
ence, rather than during training or as a post-processing step.
Autoregressive models such as transformers and LLMs are
particularly well-suited to this approach, as their sequential
generation allows rules to be enforced step-by-step. Con-
cretely, we suggest that rules guide the model’s generation
process, dynamically pruning its token options at each step
to enforce rule compliance. This approach enables easy repur-
posing of models by modifying the rules rather than retraining
or fine-tuning. It also allows network operators to focus on
defining useful rules without worrying whether they are dif-
ferentiable, appear enough in training, or can be embedded
in prompts. Finally, as we will show, enforcing rules during
inference can be minimally invasive and preserve ML fidelity.

While conceptually straightforward, intercepting and guid-
ingan LLM’s generation process using logic is highly challeng-
ing. First, network rules are complex, as they involve arith-
metic constraints, conditional logic, and relationships across
multiple input variables, making them incompatible with
token-based filtering, which is recently supported by some

LLMs to ensure syntactic compliance [2, 12, 13, 34, 38, 51]. To
cope with this complexity and benefit from the rich domain
knowledge of networking, we posit that a true constraint
solver must natively join the LLM’s inference process. Fol-
lowing this principle, we built LeJIT, a framework in which
an SMT solver intersects the LLM’s token-by-token infer-
ence to guide it towards rule-compliant generation. Before
each token generation, the solver dynamically computes the
set of valid next tokens based on the applicable logic rules,
and the already generated tokens. Critically, the solver also
looks ahead before computing the valid tokens to ensure that
there is a path to a valid complete output, i.e., token sequence.
As aresult, LeJIT is minimally invasive, gently nudging the
LLM away from mistakes that lead to dead ends without over-
writing decisions that would not have led to rule violations,
thereby preserving the LLM’s original (valid) decisions.

The tight integration of the SMT solver brings LeJIT sub-
stantially more flexibility and power but comes with its own
challenges, some addressed and many still ahead. One such
hurdle is the mismatch in granularity: LLMs operate over
vocabularies of tokens, while SMT solvers reason over higher-
level variables such as network measurements and packet
header fields. To bridge this gap, LeJIT constructs a character-
level transition system on the fly to exert finer-grained control
than the granularity of variable-level network rules.

Several challenges remain, especially related to improving
solver speed, including designing near-lossless abstractions,
identifying which rules are most helpful for a given task, and
refining provided rules to avoid dead ends more effectively.

Even in its proof-of-concept form, LeJIT shows significant
promise. It turns the same GPT-2 model into either a syn-
thetic data generator or a telemetry imputer simply by ap-
plying different sets of logic rules at inference time. Notably,
LeJIT-guided GPT-2 delivers performance on par with heav-
ily engineered pipelines like Zoom2Net and NetShare—while
producing outputs that are more accurate from a knowledge-
consistency perspective. This result points to a compelling
vision: instead of chasing ever-larger opaque models, we could
build a single reusable, task-adaptable foundation model for
networking and work on guiding it with logic (rather than
raw GPU power).!

2 MOTIVATION

We begin with a motivating use case introduced in recent
work [16] to illustrate the benefits of combining ML with
logic in networking. We use this use case to highlight why
existing approaches fall short of fully realizing that potential
and validate our intuition in our preliminary results (§4).

The authors have nothing against GPUs—just a shortage.

Hongyu Hé and Maria Apostolaki

2.1 Why Networking Needs Logic

Example. A datacenter operator seeks to analyze fine-grained
burst behavior [14], but only coarse-grained measurements
(e.g., ingress volume, ECN marked byte count) at 50 ms in-
tervals are available. To recover missing millisecond-level
ingress bytes Iy..1s, the operator uses a telemetry imputer—an
ML model trained to infer fine-grained signals from coarse-
grained ones [16]. This task is feasible because many network
metrics are correlated [14, 16].

As illustrated in Fig. 1a, the operator chooses to use a
LLM, leveraging its recent advances. Given inputs such as
Totallngressy =100 and Congestiony =8 over a window
T =5, the LLM predicts Iy..I; = [20,15,25,70,8]. This output
violates two key rules: I5 = 70 exceeds the bandwidth limit
(BW=60), and the total sum (138) exceeds TotalIngressry.

As prior work has noted [16, 24], rather than faulting an
ML model for violating known rules, a better solution is to
explicitly encode those rules into the model’s pipeline. In
our example, these include: Vt < T : 0 < I, < BW (R1);
Zf:_ol I; =TotalIngresst (R2); and (Congestiony >0) =
max_'{I;} > 1BW (R3).

R1 ensures that the ingress volume (I;) at any given time
is non-negative and does not exceed the bandwidth (BW).
R2 states that the sum of all I; within a time window T must
equal the total observed ingress TotalIngressy. R3 specifies
that if ECN-markings (Congestion) are detected during the
window T, there must be a burst event where at least one I;
exceeds half the bandwidth [14].

2.2 Where Prior Methods Fall Short

Enforcing logical rules, such as R1-R3, on ML models in a
way that leverages their complementary strengths without
putting them at odds is challenging. To better understand this
problem, we examine three fundamentally different strategies
explored in prior networking and ML research: (1) correcting
model outputs after inference, (2) teaching model rules at
training time, and (3) constraining the model decoding pro-
cess. We omit the discussion on prompt engineering for LLMs,
which is inherently ad-hoc and provides no guarantees.
Enforcing rules post-inference. A natural way of integrat-
ing logic rules in any ML task is to allow the generative model
to operate freely and then correct its output after generation
to satisfy these rules. The correction can be done using a
fast deterministic algorithm as in [24], an ILP as in [16] or a
full constraint solver (e.g., an SMT solver) as done in other
domains [5, 10, 45, 49].

We illustrate this post-inference in the lower part of Fig. 1a,
where the LLM’s invalid output is fed to an SMT solver (®)
together with R1-R3. We use an SMT solver because it is the
most general. The solver’s job is to modify the LLM’s output
to make it compliant with all provided rules. Unless provided

Just-in-Time Logic Enforcement

LLM Inference

e

&

LLM Inference with LeJIT

R1 X @ Y0 ~ H H H H H H
n -CEREHEHEHEEHERD o)~ « T =TT
RI1,R2,R3 I [o'] [o'} lo'|
L 20)
R2 X
ENE N R | 5 e | %- rmééém
-4 '4' ‘4 4’ ‘4
® w1 E‘lﬁﬂ;ﬁ;ig - [Solver |€ [20 | 15 25 [39[2] [5] [5]
LR2, L I, I, I, I

Soluton 1 [| < EaNara v 60 Lo
@=n) 60 0 Logic Enforcement 14/:\ 1¥\

q 1 A o0
f““;';f;;imlslzslwlm éé:ﬁiﬁ = 5]
Logi'c Enforcement L= A A i %mm " ﬂ

L 2
[0 [15 25 Jeo [o] [20 15 JTas T30 [1] [] [£] [i B Vi R
Iy L I, I3 In 0 1 2 3 In L H HE IR H i
@) b K

R1:VEt<T:0<1I; <BW
R2: 2£Bl I; = TotalIngress

LLM

R3: (Congestion > 0
(Cong) Vocab

= max; {L,} > 1BW

Allowed |Chosen
Token | Token

i i+1 i+2 i+3

i+4 i+5
.
H

Figure 1: Example of using an LLM for network telemetry imputation under
three rules R1-R3. (a) A pure LLM (blue frame) generates imputed samples
[Ip..I;] that violate fundamental networking rules such as R1-R3. We can
enforce logic post-inference (yellow frame), but not without hurting the
statistical fidelity of the imputed sample. (b) Instead of enforcing rules
post-inference, LeJIT invokes an SMT solver before every token generation
to filter out tokens, that if selected by the LLM, will result in rule violations,

effectively enforcing logic Just-In-Time.

with a specific optimization goal, the SMT solver would select
an arbitrary solution among all compliant ones, not the most
likely solution based on historical data. In other words, it will
not leverage the LLM’s learned distribution. One possible mit-
igation is to define a distance metric (fa) and ask the solver to
find a solution that satisfies the constraints while remaining as
close as possible to the original output of the LLM. While this
method is relatively straightforward in domains like vision,
where simple metrics like L2 distance often suffice, various
fields in networking are far more complex to compare. Seman-
tic meaning does not align with numerical distance [9, 23, 25],
making it challenging to define a meaningful metric for each
field of interest.

Teaching the model to follow rules. One way to encour-
age constraint satisfaction (R1-R3) is to embed rules into the
training process, typically by adding them to the loss func-
tion as regularization terms [3, 16, 26, 39, 54]. The model is
penalized for violations during training, with the hope that
it generalizes rule compliance at inference time.

Figure 2: Character-level tran-
sition system constructed by
LeJIT on the fly when imputing
I; and I;. LeJIT operates on tokens,
while the SMT solver on variables.
Carefully aligning them allows
LeJIT to be minimally invasive.

However, this approach has major drawbacks. It offers no
guarantee of constraint satisfaction during inference, and ap-
plies only to differentiable rules or their approximations—pro-
blematic in networking, where most rules are non-differentia-
ble. For instance, constraints R1-R3 require approximations
such as sigmoid functions or fuzzy logic [58] to be included
in the loss. Moreover, scaling to many constraints is difficult:
each rule must be manually encoded and weighted, which
complicates optimization [3, 26]. This is especially limiting in
domains like networking, where describing a single protocol
may involve hundreds of rules [19, 23, 28, 55]. Lastly, this
strategy lacks flexibility—any update to the rule set requires
retraining or fine-tuning, making it ill-suited for dynamic
environments.

Enforcing rules during decoding. The inability of ML and
LLM:s in particular to follow explicit rules has prompted the
ML research community to develop specialized techniques
to help them adhere to standardized output formats such as

JSON or knowledge triplets [2, 12, 13,34, 38,51]. Formally, con-
straint decoding cannot be used to enforce networking rules
because thereisno theoretical foundation for converting them
into compatible forms, such as individual automata or their
unions. In other words, constrained decoding typically filters
tokens based on immediate validity (like matching a gram-
mar), but it cannot perform arithmetic calculations or ensure
that a future token can satisfy the constraint model. Encoding
a constraint with)} as rule R2 into a decoding process would
mean tracking the running total and pruning any continuation
that makes the final sum impossible—essentially doing search
or backtracking. Even keeping track of a single such rule is far
beyond the capability of standard token-by-token decoding.

3 JUST-IN-TIME LOGIC ENFORCEMENT

Having shown that enforcing logic post-inference or during
training compromises either correctness (compliance with
rules) or fidelity (learned distributions), and constraint en-
coding is inadequate for network constraints, this section
presents LeJIT: a framework for Enforcing Logic Just-In-Time.
It intersects the LLM’s token-by-token inference to guide
it towards rule-compliant generation as shown in Fig. 1b.
While incorporating the SMT solver introduces some infer-
ence delay, it provides a valuable balance between neural and
symbolic reasoning. It maximizes the contribution of sym-
bolic reasoning by enabling the enforcement of arbitrary con-
straints, including arithmetic, non-differentiable, and global
ones, without placing additional burden on the operator. Same
as using an LLM, despite its training cost, LeJIT maximizes
the contribution of statistical learning.

To better understand how LeJIT works, let us revisit the ex-
ample of imputing [y, ...,Is] but now as generated with LeJIT’s
guidance. After generating a complete value (e.g., I, at @),
LeJIT invokes the solver with the provided constraints, instan-
tiated using the values generated so far. This dynamic partial
instantiation is crucial for determining which constraints are
relevant and what conditions must be met to ensure valid out-
put going forward. For example, suppose the LLM had already
produced values satisfying 3¢ < 3 : I; > 30; in that case, R3
would already be met and thus deactivated when determining
the feasible region for L. If no such value has been gener-
ated—as is the case in our example—the solver considers all
three rules when computing the valid range for I5 (@). Then,
Le]JIT invalidates all candidate values of I that fall outside
this feasible region (@), effectively guiding the model toward
valid generation paths. As a result, the resulting model output
I = 39 is always guaranteed to satisfy all constraints (@).
Moreover, in the presence of global aggregation constraints

Hongyu Hé and Maria Apostolaki

such as R2, this guided inference process often concludes with
only a single valid value remaining for the LLM to emit (@).

LeJIT provides a little guidance, but it goes a long way.
Over-constraining the LLM, for example, through partial com-
pletions or rigid templates, disrupts its natural reasoning path
and undermines its generative strength. Still, even a well-
trained model is highly likely to produce invalid outputs,
since a single incorrect token can render the entire sequence
invalid. As illustrated in Fig. 1a, the sequence becomes invalid
as early as the generation of I5. LeJIT strikes a balance by
filtering out rule-violating tokens at each generation step,
intervening only when the model is about to make a critical
mistake. This approach preserves the LLM’s natural behavior
while enforcing compliance with constraints.

LeJIT offers LLM-native generation with character-level
control. A key challenge in guiding an LLM with the solver is
the mismatch in granularity between the model’s generation
process and the solver’s reasoning. LLMs produce output to-
kenby token, and these tokens, defined by the tokenizer, are of-
ten opaque and lack semantic clarity. In contrast, SMT solvers
operate over well-defined, interpretable variables (such as
ingress bytes or ECN markings) expressed through explicit
logical constraints. This discrepancy makes it difficult to en-
force constraints without interfering with the LLM’s native
decoding behavior.

LeJIT addresses this issue by offering fine-grained, character-

level guidance, even when constraints are specified at the level
of semantic variables. To achieve this level of control, LeJIT
treats numeric values as plain text [36] and uses a character-
level tokenization scheme [44], generating each number digit
by digit. As shown in Fig. 2, LeJIT constructs a character-
level transition system[4, 46, 48] on the fly during inference.
Specifically, given a feasible range for a target variable as
determined by the solver, LeJIT builds an unlabeled transition
system where the current state reflects the last token selected
by the LLM, and the set of next states includes all tokens that
would maintain the value within the valid region.
A single LLM to “rule” them all? A key side benefit of
applying rules at inference time is that modifying the rules en-
ables repurposing an existing LLM—originally trained for one
task—for a different task, without retraining or fine-tuning.
For example, an LLM trained to impute fine-grained ingress
volumes can be readily adapted to generate synthetic coarse-
grained signals by simply changing the constraints: instead of
enforcing rules on fine-grained ingress values I; that rely on
access to coarse-grained signals, we can substitute rules that
capture relationships among the coarse-grained signals them-
selves. In our preliminary evaluation (§4.2), we demonstrate
that a generic LLM trained for telemetry imputation can, un-
der the guidance of LeJIT, achieve competitive performance
with SOTA specialized data generators.

Just-in-Time Logic Enforcement

Zoom2Net 9.09 Zoom2Net 1.37
. . Vanilla
Vanilla GPT-2 18.18 GPT-2 1.24

Rej. Samp.{0.00 Rej. Samp. >2 days
LeJIT 7.27 LeJIT 5.11
(manual) (manual)
LeJIT!o 0o LeJIT 5.02
(NetNomos) (NetNomos)
5 10 15 20 2 4 6 8 10

Rule Violation [%] Runtime [h]

P99 Acc. 1

Post-Burst Ingress
Autocorr. Burst Position
Total Ingress Burst Frequency

B Vanilla GPT2 EEN Rej. Samp. =R (ol N omos) =1 Zoom2Net
MSE Burst Height
Burst Duration

EMD

Burst Volume

0.0 0.5 1.0 0.0 0.5 1.0
Normalized Error Normalized Error

Figure 3: Rule violations in imputed time series (left) Figure 4: LeJIT improves both imputation accuracy (left) and
and runtime for 30K samples (right). LeJIT ensures 100% downstream task performance (right) of the generic GPT-2 via

rule compliance with a moderate runtime overhead.

4 EARLY RESULTS

As a proof of concept, we prototype and empirically evaluate
the effectiveness of LeJIT in experiments.

Dataset. We conduct all experiments using the data center
data released by Meta [14], following the same evaluation
setup as that of Zoom2Net [16].The test set contains over
30,000 data points.

Network rules. For the network telemetry imputation task
(§4.1), we use 55 rules which describe relationships between
coarse-grained signals (e.g., retransmissions) and fine-grained
ingress measurements I;. For the synthetic network data gen-
eration task (§4.2), we use 171 rules that capture relationships
among the coarse-grained signals themselves. Both sets of
rules were provided by the authors of NetNomos [23].
LeJIT implementation. We evaluate LeJIT on a less power-
ful LLM, namely, GPT-2 [35] We train GPT-2 from scratch
on the aforementioned datacenter dataset [14] and adopt
character-level tokenization [44] to support fine-grained con-
trol. Importantly, we repurpose the same trained model for
two distinct tasks by applying task-specific rule sets through
LeJIT, without any retraining or fine-tuning.

Baselines. We use the following baseline for both use cases:
(i) Vanilla GPT-2: The original GPT-2 model without Le]JIT;
(ii) Rejection Sampling: A naive approach that discards all
outputs violating network rules and repeatedly samples from
GPT-2 until a valid output is produced;(iii) “manual” rules:
Instead of using the automatically discovered rules from Net-
Nomos [23], this baseline enforces the four manually specified
rules (C4—C7) used by Zoom2Net [16]. For each use case, we
compare against SOTA task-specific frameworks. For net-
work measurement imputation (§4.1), we evaluate against
Zoom?2Net [16].For synthetic network data generation (§4.2),
we compare against a diverse set of SOTA data generators:
NetShare [56], EEWGAN-GP [17], CTGAN [53], TVAE [53],
and the GPT-2-based REaL.TabFormer [43].

logicenforcement, achieving on-parresults with Zoom2Net [16].

4.1 LeJIT for Network Telemetry Imputation

Finding 1: Unlike task-specific models, which (at best) com-
ply with a few hand-picked rules, LeJIT comply with all 55
rules, while achieving on-par performance in imputation
accuracy and downstream tasks.

We apply LeJIT on the task of network telemetry imputa-
tion and evaluate its effectiveness in enforcing network rules,
overhead and accuracy.

Rule violation. Fig. 3 (left) reports rule violation rates. Vanilla
GPT-2, lacking any constraints, shows the highest violation
rate at 18%. Zoom2Net, despite using a constraint enforce-
ment module (CEM), relies on limited and soft manual rules,
resulting in over 7% violations—similar to LeJIT when only
manual rules are used. With the full set of NetNomos rules,
LeJIT reduces violations to 0%.

Runtime overhead. As shown in Fig. 3 (right), rejection sam-
pling achieves perfect compliance but takes over two days,
as it repeatedly discards invalid outputs without guiding the
model. In contrast, LeJIT completes over 30K imputations in
5 hours by guiding inference directly. Zoom2net’s runtime
performance is not directly comparable because it enforces
a fraction of the rules. While LeJIT incurs significant over-
head compared to unguided GPT-2, our prototype remains
unoptimized and offers opportunities for future speedups (§5).
Imputation accuracy. LeJIT with manual rules substantially
improves GPT-2’s accuracy (Fig. 4, left), though it still trails
Zoom2Net due to limited domain coverage. Rejection sam-
pling hurts accuracy by distorting the LLM’s distribution,
suppressing near-correct outputs and forcing sampling from
unrelated regions. With full NetNomos rules, LeJIT matches
and even surpasses Zoom2Net on EMD and p99 accuracy,
while also improving burst analysis metrics across the board.
When guided by LeJIT, GPT-2 outperforms Zoom2Net on all
metrics except Burst Position. These results show that LeJIT
enforces rules effectively at inference time, with performance
improving as rule quality increases. The remaining gap on

Ingress
Egress
In Rxmit
I CTGAN
Out Rxmit 3 TVAE
v it I NetShare
I E-WGAN-GP
In Congestion I RealTabFormer
B Vanilla GPT-2
c . I Rej. Samp.
onnections E LefIT
0.0 0.2 0.4

JSD (1)

Figure 5: LeJIT generates samples of high fidelity (on-par
with SOTA) while complying with all 171 rules (unlike SOTA).

time-sensitive metrics (e.g., autocorrelation, Burst Position)
likely stems from GPT-2’s general-purpose architecture and
the limited temporal expressiveness of the extracted rules
by NetNomos [23]. Advancing methods for learning richer
temporal constraints remains a key direction for future work
and will unlock more benefits for LeJIT.

4.2 LeJIT for Network Data Synthesis

Finding 2: LeJIT preserves, and in some cases improves,
the statistical fidelity of synthetic time series generated by
tailored generators, while ensuring the time series follow
hundreds of rules (unlike tailored data generators). Impor-
tantly, LeJIT’s underlying model is not task-specific.

We now apply LeJIT to the task of synthetic data generation
and evaluate its effectiveness in enforcing network rules. Un-
like the imputation, this generation task is unconditional: the
models are not provided with any input signals (e.g., prompts
no longer fed into GPT-2), and the data they generate depends
solely on the learned input distributions.

As shown in Fig. 5, we compare various GPT-2 variants
(vanilla, with rejection sampling, and with LeJIT’s guidance)
against five aforementioned SOTA data generators. From each
model, we draw 30K samples and compute the Jensen—-Shan-
non divergence (JSD) with respect to the original data dis-
tribution. The results demonstrate that LeJIT preserves the
generative behavior of the base LLM while enforcing all 171
network rules. Rejection sampling significantly distorts the
learned distribution, while the other data generators not only
violate a large number of network rules [23], but also fail to
offer clear advantages in approximating the target distribu-
tion. In contrast, LeJIT enables the base LLM to outperform its
vanilla counterpart in most cases. This result suggests that em-
bedding domain knowledge through inference can improve
the quality of generated data distributions.

Hongyu Hé and Maria Apostolaki

5 RESEARCH AGENDA

Logic-Guided Foundation Models for Networking. We
envision a future where one LLM can power a broad range
of networking tasks (e.g., configuration generation, security
policy synthesis) simply by swapping in task-specific logic
rules. Such a foundational, logic-guided model for network-
ing would unify currently siloed ML efforts and vastly reduce
engineering overhead [52]. Key questions include: (1) how to
symbolically handle non-numeric or structured outputs (e.g.,
tables, topology graphs) in alanguage-based model, (2) how to
tokenize heterogeneous networking knowledge in a way that
does not create misalignment between the model output and
symbolic rules, and (3) how to efficiently switch or compose
rule sets for different tasks on the fly. Success in this direction
would be transformative—instead of maintaining bespoke ML
solutions for every networking problem, operators could rely
on a single powerful model that is made context-specific and
trustworthy via JIT logic “plug-ins.”

Constraint Learning and Solver Co-Design To improve
JIT logic enforcement, two key directions are (1) improving
LLM-solver integration and (2) improving the rule sets them-
selves. Current implementations rely on general-purpose
SMT solvers external to the LLM, introducing significant infer-
ence delays [57]. Future work should enable tighter coupling
through token-level solvers, solver-aware decoding paths, or
hybrid neural-symbolic architectures, making JIT enforce-
ment feasible for latency-sensitive applications. In parallel,
network rules—which are currently static and manually de-
fined—must become more expressive (e.g., better support for
temporal logic), data-driven, and adaptable. Systems could
learn constraints from logs, refine them over time, or co-train
them with model outputs.

Generalizing LeJIT beyond LLMs. While LeJIT currently
targets autoregressive language models, many core network-
ing tasks (e.g., traffic forecasting, anomaly detection, routing,
and protocol simulation) rely on non-language models like
time-series regressors, GNNs, and diffusion models. However,
this generalization is non-trivial. Unlike token-based LLMs,
these models often produce continuous, high-dimensional
outputs without an inherent notion of “next-step,” making it
unclear how to insert constraint checks or prune invalid pre-
dictions. One promising direction is to rethink the inference
process itself in networking as a constrained optimization
problem: for instance, projecting a model’s unconstrained
output onto the nearest point in the rule-compliant space via
differentiable solvers [1, 32, 47] or gradient-based corrections.
Similarly, generative models could be trained to emit semantic
concepts [30, 33] that are easier to steer via symbolic logic,
then decoded in a constraint-aware manner.

Just-in-Time Logic Enforcement

REFERENCES

(1]

(2]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven
Diamond, and J Zico Kolter. 2019. Differentiable convex optimization
layers. Advances in neural information processing systems 32 (2019).
Luca Beurer-Kellner, Marc Fischer, and Martin T. Vechev. 2024. Guiding
LLMs The Right Way: Fast, Non-Invasive Constrained Generation. Inter-
national Conference on Machine Learning (ICML) abs/2403.06988 (2024).
Elliot Chane-Sane, Pierre-Alexandre Leziart, Thomas Flayols, Olivier
Stasse, Philippe Souéres, and Nicolas Mansard. 2024. Cat: Constraints
as terminations for legged locomotion reinforcement learning. In 2024
IEEE/RSYJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 13303-13310.

Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick
Heymans, Axel Legay, and Jean-Francois Raskin. 2012. Featured
transition systems: Foundations for verifying variability-intensive
systems and their application to LTL model checking. IEEE Transactions
on Software Engineering 39, 8 (2012), 1069-1089.

Andrea Coletta, Sriram Gopalakrishnan, Daniel Borrajo, and Svitlana
Vyetrenko. 2023. On the constrained time-series generation prob-
lem. Advances in Neural Information Processing Systems 36 (2023),
61048-61059.

Davide Corsi, Enrico Marchesini, and Alessandro Farinelli. 2021. Formal
verification of neural networks for safety-critical tasks in deep reinforce-
ment learning. In Uncertainty in Artificial Intelligence. PMLR, 333-343.
Tianyu Cui, Xinjie Lin, Sijia Li, Miao Chen, Qilei Yin, Qi Li, and Ke
Xu. 2025. TrafficLLM: Enhancing LLMs for Network Traffic Analysis.
arXiv preprint arXiv:2504.04222 (2025). Version 2025-04-05.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo,
Gianluigi Rozza, Maziar Raissi, and Francesco Piccialli. 2022. Scientific
machine learning through physics—informed neural networks: Where
we are and what’s next. Journal of Scientific Computing 92, 3 (2022), 88.
Joscha Cuppers, Adrien Schoen, Gregory Blanc, and Pierre-Francois
Gimenez. 2024. FlowChronicle: Synthetic Network Flow Generation
through Pattern Set Mining. Proceedings of the ACM on Networking
2, CONEXT4 (2024), 1-20.

Priya L Donti, David Rolnick, and J Zico Kolter. 2021. DC3: A learning
method for optimization with hard constraints. arXiv preprint
arXiv:2104.12225 (2021).

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. 2024.
Detecting hallucinations in large language models using semantic
entropy. Nature 630, 8017 (2024), 625-630.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. 2023.
Grammar-constrained decoding for structured NLP tasks without
finetuning. arXiv preprint arXiv:2305.13971(2023).

Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. 2023.
Grammar-constrained decoding for structured NLP tasks without
finetuning. arXiv preprint arXiv:2305.13971(2023).

Ehab Ghabashneh, Yimeng Zhao, Cristian Lumezanu, Neil Spring,
Srikanth Sundaresan, and Sanjay Rao. 2022. A microscopic view of
bursts, buffer contention, and loss in data centers. In Proceedings of
the 22nd ACM Internet Measurement Conference. 567-580.

Fengchen Gong, Divya Raghunathan, Aarti Gupta, and Maria
Apostolaki. 2023. Towards Integrating Formal Methods into ML-Based
Systems for Networking. In Proceedings of the 22nd ACM Workshop
on Hot Topics in Networks. 48-55.

Fengchen Gong, Divya Raghunathan, Aarti Gupta, and Maria Apos-
tolaki. 2024. Zoom2net: Constrained network telemetry imputation.
In Proceedings of the ACM SIGCOMM 2024 Conference. 764-777.
Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,
and Aaron C Courville. 2017. Improved training of wasserstein gans.
Advances in neural information processing systems 30 (2017).

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Pouya Hamadanian, Behnaz Arzani, Sadjad Fouladi, Siva Kesava Reddy
Kakarla, Rodrigo Fonseca, Denizcan Billor, Ahmad Cheema, Edet
Nkposong, and Ranveer Chandra. 2023. A holistic view of ai-driven
network incident management. In Proceedings of the 22nd ACM
Workshop on Hot Topics in Networks. 180—-188.

Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno. 2021.
Finding invariants of distributed systems: It’s a small (enough) world
after all. In 18th USENLX symposium on networked systems design and
implementation (NSDI 21). 115-131.

Zhiyuan He, Aashish Gottipati, Lili Qiu, Xufang Luo, Kenuo Xu, Yuqing
Yang, and Francis Y Yan. 2024. Designing Network Algorithms via
Large Language Models. In Proceedings of the 23rd ACM Workshop on
Hot Topics in Networks. 205-212.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng,
Haotian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng,
Bing Qin, et al. 2025. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. ACM
Transactions on Information Systems 43, 2 (2025), 1-55.

Vojtéch Hudecek and Ondfej Dusek. 2023. Are LLMs all you need for
task-oriented dialogue? arXiv preprint arXiv:2304.06556 (2023).
Hongyu Heé, Minhao Jin, and Maria Apostolaki. 2025. Making
Logic a First-Class Citizen in Network Data Generation with ML.
arXiv:2506.23964 [cs.NI] https://arxiv.org/abs/2506.23964

Xi Jiang, Shinan Liu, Aaron Gember-Jacobson, Arjun Nitin Bhagoji,
Paul Schmitt, Francesco Bronzino, and Nick Feamster. 2024. Netdiffu-
sion: Network data augmentation through protocol-constrained traffic
generation. Proceedings of the ACM on Measurement and Analysis of
Computing Systems 8, 1 (2024), 1-32.

Minhao Jin and Maria Apostolaki. 2025. Robustifying ML-powered
Network Classifiers with PANTS. In 34th USENIX Security Symposium
(USENIX Security 25).

Yunho Kim, Hyunsik Oh, Jeonghyun Lee, Jinhyeok Choi, Gwanghyeon
Ji, Moonkyu Jung, Donghoon Youm, and Jemin Hwangbo. 2024. Not
only rewards but also constraints: Applications on legged robot
locomotion. IEEE Transactions on Robotics (2024).

Haitao Li, Qingyao Ai, Jia Chen, Qian Dong, Zhijing Wu, and Yiqun
Liu. 2025. Blade: Enhancing black-box large language models with
small domain-specific models. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 39. 24422-24430.

Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris
Kasikei, and Karem A Sakallah. 2019. I4: incremental inference of induc-
tive invariants for verification of distributed protocols. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles. 370-384.
Sathiya Kumaran Mani, Yajie Zhou, Kevin Hsieh, Santiago Segarra,
Ranveer Chandra, Srikanth Kandula, Trevor Eberl, Eliran Azulai,
and Ido Frizler. 2023. Enhancing Network Management Using Code
Generated by Large Language Models. In Proceedings of the 22nd ACM
Workshop on Hot Topics in Networks (HotNets °23). Cambridge, MA,
USA. hitps://doi.org/10.1145/3626111.3628183

Jiayuan Mao, Joshua B Tenenbaum, and Jiajun Wu. 2025. Neuro-
Symbolic Concepts. arXiv preprint arXiv:2505.06191 (2025).

Rajdeep Mondal, Alan Tang, Ryan Beckett, Todd Millstein, and George
Varghese. 2023. What do LLMs need to synthesize correct router
configurations?. In Proceedings of the 22nd ACM Workshop on Hot
Topics in Networks. 189-195.

Geoffrey Négiar, Michael W Mahoney, and Aditi S Krishnapriyan.
2022. Learning differentiable solvers for systems with hard constraints.
arXiv preprint arXiv:2207.08675 (2022).

Sagar Patel, Dongsu Han, Nina Narodystka, and Sangeetha Abdu
Jyothi. 2024. Toward Trustworthy Learning-Enabled Systems with
Concept-Based Explanations. In Proceedings of the 23rd ACM Workshop
on Hot Topics in Networks. 60-67.

https://arxiv.org/abs/2506.23964
https://arxiv.org/abs/2506.23964
https://doi.org/10.1145/3626111.3628183

[34

=

(35

=

(36

[

(37]

(38

=

(39

—

[40

=

[41

—

(42

=

(43

[t

(44

flan?

[45

=

[46]

(47]

(48]

[49]

(50]

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo
Soares, Christopher Meek, and Sumit Gulwani. 2022. Synchromesh:
Reliable code generation from pre-trained language models. arXiv
preprint arXiv:2201.11227 (2022).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. 2019. Language Models are
Unsupervised Multitask Learners. OpenAl Blog 1, 8 (2019).
https://cdn.openai.com/better-language-models/language_models_
are_unsupervised_multitask_learners.pdf.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020.
Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research 21, 140 (2020), 1-67.
Maziar Raissi, Paris Perdikaris, and George E Karniadakis. 2019. Physics-
informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational physics 378 (2019), 686-707.
Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021.
PICARD: Parsing incrementally for constrained auto-regressive
decoding from language models. arXiv preprint arXiv:2109.05093(2021).
Sungyong Seo, Sercan O. Arik, Jinsung Yoon, Xiang Zhang, Kihyuk
Sohn, and Tomas Pfister. 2021. Controlling Neural Networks with Rule
Representations. arXiv:2106.07804 [cs.LG]

Prakhar Sharma and Vinod Yegneswaran. 2023. Prosper: Extracting
protocol specifications using large language models. In Proceedings
of the 22nd ACM Workshop on Hot Topics in Networks. 41-47.

Rahul Anand Sharma, Ishan Sabane, Maria Apostolaki, Anthony
Rowe, and Vyas Sekar. 2022. Lumen: a framework for developing and
evaluating ML-based IoT network anomaly detection. In Proceedings of
the 18th International Conference on emerging Networking EXperiments
and Technologies. 59-71.

Junhong Shen, Neil Tenenholtz, James Brian Hall, David Alvarez-Melis,
and Nicolo Fusi. 2024. Tag-LLM: Repurposing general-purpose LLMs
for specialized domains. arXiv preprint arXiv:2402.05140 (2024).

Aivin V. Solatorio and Olivier Dupriez. 2023. REaLTabFormer:
Generating Realistic Relational and Tabular Data using Transformers.
arXiv preprint arXiv:2302.02041 (2023).

Yi Tay, Vinh Q Tran, Sebastian Ruder, Jai Gupta, Hyung Won Chung,
Dara Bahri, Zhen Qin, Simon Baumgartner, Cong Yu, and Donald Met-
zler. 2021. Charformer: Fast character transformers via gradient-based
subword tokenization. arXiv preprint arXiv:2106.12672 (2021).

Paul Temple, José A Galindo, Mathieu Acher, and Jean-Marc Jézéquel.
2016. Using machine learning to infer constraints for product lines.
In Proceedings of the 20th International Systems and Software Product
Line Conference. 209-218.

Jan Tretmans. 2008. Model based testing with labelled transition
systems. In Formal Methods and Testing: An Outcome of the FORTEST
Network, Revised Selected Papers. Springer, 1-38.

Kiwon Um, Robert Brand, Yun Raymond Fei, Philipp Holl, and Nils
Thuerey. 2020. Solver-in-the-loop: Learning from differentiable
physics to interact with iterative pde-solvers. Advances in neural
information processing systems 33 (2020), 6111-6122.

Johan Van Benthem and Jan Bergstra. 1994. Logic of transition systems.
Journal of Logic, Language and Information 3 (1994), 247-283.

David Wan, Chris Kedzie, Faisal Ladhak, Marine Carpuat, and Kathleen
McKeown. 2020. Incorporating Terminology Constraints in Automatic
Post-Editing. In Conference on Machine Translation.

Changjie Wang, Mariano Scazzariello, Alireza Farshin, Simone Ferlin,
Dejan Kosti¢, and Marco Chiesa. 2024. Netconfeval: Can llms facilitate
network configuration? Proceedings of the ACM on Networking 2,
CoNEXT2, 1-25.

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Hongyu Hé and Maria Apostolaki

Brandon T Willard and Rémi Louf. 2023. Efficient guided generation
for large language models. arXiv preprint arXiv:2307.09702 (2023).
Duo Wu, Xianda Wang, Yaqi Qiao, Zhi Wang, Junchen Jiang,
Shuguang Cui, and Fangxin Wang. 2024. NetLLM: Adapting
Large Language Models for Networking. In Proceedings of the
ACM SIGCOMM 2024 Conference. Sydney, NSW, Australia, 661-678.
https://doi.org/10.1145/3651890.3672268

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan
Veeramachaneni. 2019. Modeling tabular data using conditional gan.
Advances in neural information processing systems 32 (2019).

Chenxi Yang and Swarat Chaudhuri. 2022. Safe neurosymbolic learning
with differentiable symbolic execution. arXiv preprint arXiv:2203.07671
(2022).

Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh. 2022. {DuoAI}:
Fast, automated inference of inductive invariants for verifying
distributed protocols. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22). 485-501.

Yucheng Yin, Zinan Lin, Minhao Jin, Giulia Fanti, and Vyas Sekar. 2022.
Practical gan-based synthetic ip header trace generation using netshare.
In Proceedings of the ACM SIGCOMM 2022 Conference. 458-472.

Yifei Yuan, Soo-Jin Moon, Sahil Uppal, Limin Jia, and Vyas Sekar. 2020.
{NetSMC}: A Custom Symbolic Model Checker for Stateful Network
Verification. In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20). 181-200.

Lotfi Asker Zadeh. 1988. Fuzzy logic. Computer 21, 4 (1988), 83-93.
Jiali Zeng, Fandong Meng, Yongjing Yin, and Jie Zhou. 2024. Teaching
large language models to translate with comparison. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 38. 19488-19496.
Yedi Zhang, Yufan Cai, Xinyue Zuo, Xiaokun Luan, Kailong Wang, Zhe
Hou, Yifan Zhang, Zhiyuan Wei, Meng Sun, Jun Sun, et al. 2024. The
Fusion of Large Language Models and Formal Methods for Trustworthy
AT Agents: A Roadmap. arXiv preprint arXiv:2412.06512 (2024).

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu,
Xinting Huang, Enbo Zhao, Yu Zhang, Yulong Chen, et al. 2023. Siren’s
song in the Al ocean: a survey on hallucination in large language
models. arXiv preprint arXiv:2309.01219 (2023).

https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2106.07804
https://doi.org/10.1145/3651890.3672268

	Abstract
	1 Introduction
	2 Motivation
	2.1 Why Networking Needs Logic
	2.2 Where Prior Methods Fall Short

	3 Just-in-Time Logic Enforcement
	4 Early Results
	4.1 LeJIT for Network Telemetry Imputation
	4.2 LeJIT for Network Data Synthesis

	5 Research Agenda
	References

