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ABSTRACT

Managing computer networks is increasingly complex. While
machine learning offers scalability and can learn from unla-
beled data, it remains error-prone, even making mistakes ob-
vious to humans. This challenge is frustrating in networking,
which is governed by clear logic rules. Prior attempts to com-
bine ML with logic fall short: they handle only simple rules, de-
mand retraining or heavy engineering per task, and still either
compromise fidelity or offer no rule compliance guarantees.

In this paper, we argue that the most effective way to com-
bine ML with logic is to enforce logic during inference (or
Just-In-Time) rather than during training or post-generation.
This approach decouples logic extraction and enforcement
from ML design and training, allowing more expressive rules
with little engineering overhead and achieving a better trade-
off between fidelity and compliance guarantees.

To demonstrate the potential of Just-In-Time Logic En-
forcement, we design LeJIT, a proof-of-concept framework
that transforms the same GPT-2 model into either a synthetic
data generator or a telemetry imputer by applying differ-
ent sets of logic rules at inference time. At its core, LeJIT
interleaves an SMT solver into the LLM’s inference process,
guiding generation step-by-step to enforce domain-specific
rules. By performing on par with task-specific systems, LeJIT
offers early evidence that logic-driven inference may be the
key to harnessing ML in networking—and opens the door to
imagining a foundation model for networking that we can
shape through logic rules, rather than costly retraining or
task-specific architectures.

1 INTRODUCTION

Machine learning (ML), and large language models (LLMs) in
particular, hold promise for simplifying network management
from router configuration [31] and intent translation [50], to
incident response [18] and scheduling [20, 52], thanks to their
ability to learn from unlabeled data of various modalities
such as traffic traces [7], time series [29], and even RFCs [40].
However, network operators remain skeptical, as these mod-
els often hallucinate [11, 21, 41, 61] or struggle to follow
rules[3,9,23,24], making mistakes that a human expert would
never make. They are also highly data-hungry, and training or
even fine-tuning them is resource-intensive. Initial hopes for
a universal model that could handle diverse networking tasks
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without increasing training costs are fading, as we increas-
ingly see specialized, task-specific solutions [22, 27, 42, 59].

Unlike fields such as biology, networking is entirely human-
engineered, not a natural phenomenon: almost every bit trans-
mitted reflects deliberate choices in protocol design, hardware,
and software. Solely relying on ML to infer all this structure
from data (and then criticizing it when it fails to replicate or
predict behaviors well-understood by experts) is ill-conceived
at best. As prior work has noted, a natural solution is to com-
bine ML with logic [6, 15, 60], i.e., explicit rules. Existing
approaches typically follow one of two design paradigms.
On one end, logic can be taught through training, i.e., pre-
inference. For example, Zoom2Net [16] augments the loss
function with logic constraints inspired by physics-informed
neural networks [8,37]. While this approach s efficient at run-
time, it requires re-training, white-box access to the model,
limits rules to differentiable forms, and most importantly,
does not guarantee rule compliance during inference. On the
other end, logic can be enforced after inference. NetDiffu-
sion [24] takes this route, applying rule-based corrections
post-generation to fix invalid outputs. This method is model-
agnostic and supports more expressive rules, but it may fail to
find a valid correction [23], as often observed in NetDiffusion,
which relies on a deterministic one-pass algorithm.

This paper argues that logic should guide ML during infer-
ence, rather than during training or as a post-processing step.
Autoregressive models such as transformers and LLMs are
particularly well-suited to this approach, as their sequential
generation allows rules to be enforced step-by-step. Con-
cretely, we suggest that rules guide the model’s generation
process, dynamically pruning its token options at each step
to enforce rule compliance. This approach enables easy repur-
posing of models by modifying the rules rather than retraining
or fine-tuning. It also allows network operators to focus on
defining useful rules without worrying whether they are dif-
ferentiable, appear enough in training, or can be embedded
in prompts. Finally, as we will show, enforcing rules during
inference can be minimally invasive and preserve ML fidelity.

While conceptually straightforward, intercepting and guid-
ingan LLM’s generation process using logic is highly challeng-
ing. First, network rules are complex, as they involve arith-
metic constraints, conditional logic, and relationships across
multiple input variables, making them incompatible with
token-based filtering, which is recently supported by some



LLMs to ensure syntactic compliance [2, 12, 13, 34, 38, 51]. To
cope with this complexity and benefit from the rich domain
knowledge of networking, we posit that a true constraint
solver must natively join the LLM’s inference process. Fol-
lowing this principle, we built LeJIT, a framework in which
an SMT solver intersects the LLM’s token-by-token infer-
ence to guide it towards rule-compliant generation. Before
each token generation, the solver dynamically computes the
set of valid next tokens based on the applicable logic rules,
and the already generated tokens. Critically, the solver also
looks ahead before computing the valid tokens to ensure that
there is a path to a valid complete output, i.e., token sequence.
As aresult, LeJIT is minimally invasive, gently nudging the
LLM away from mistakes that lead to dead ends without over-
writing decisions that would not have led to rule violations,
thereby preserving the LLM’s original (valid) decisions.

The tight integration of the SMT solver brings LeJIT sub-
stantially more flexibility and power but comes with its own
challenges, some addressed and many still ahead. One such
hurdle is the mismatch in granularity: LLMs operate over
vocabularies of tokens, while SMT solvers reason over higher-
level variables such as network measurements and packet
header fields. To bridge this gap, LeJIT constructs a character-
level transition system on the fly to exert finer-grained control
than the granularity of variable-level network rules.

Several challenges remain, especially related to improving
solver speed, including designing near-lossless abstractions,
identifying which rules are most helpful for a given task, and
refining provided rules to avoid dead ends more effectively.

Even in its proof-of-concept form, LeJIT shows significant
promise. It turns the same GPT-2 model into either a syn-
thetic data generator or a telemetry imputer simply by ap-
plying different sets of logic rules at inference time. Notably,
LeJIT-guided GPT-2 delivers performance on par with heav-
ily engineered pipelines like Zoom2Net and NetShare—while
producing outputs that are more accurate from a knowledge-
consistency perspective. This result points to a compelling
vision: instead of chasing ever-larger opaque models, we could
build a single reusable, task-adaptable foundation model for
networking and work on guiding it with logic (rather than
raw GPU power).!

2 MOTIVATION

We begin with a motivating use case introduced in recent
work [16] to illustrate the benefits of combining ML with
logic in networking. We use this use case to highlight why
existing approaches fall short of fully realizing that potential
and validate our intuition in our preliminary results (§4).

The authors have nothing against GPUs—just a shortage.
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2.1 Why Networking Needs Logic

Example. A datacenter operator seeks to analyze fine-grained
burst behavior [14], but only coarse-grained measurements
(e.g., ingress volume, ECN marked byte count) at 50 ms in-
tervals are available. To recover missing millisecond-level
ingress bytes Iy..1s, the operator uses a telemetry imputer—an
ML model trained to infer fine-grained signals from coarse-
grained ones [16]. This task is feasible because many network
metrics are correlated [14, 16].

As illustrated in Fig. 1a, the operator chooses to use a
LLM, leveraging its recent advances. Given inputs such as
Totallngressy =100 and Congestiony =8 over a window
T =5, the LLM predicts Iy..I; = [20,15,25,70,8]. This output
violates two key rules: I5 = 70 exceeds the bandwidth limit
(BW=60), and the total sum (138) exceeds TotalIngressry.

As prior work has noted [16, 24], rather than faulting an
ML model for violating known rules, a better solution is to
explicitly encode those rules into the model’s pipeline. In
our example, these include: Vt < T : 0 < I, < BW (R1);
Zf:_ol I; =TotalIngresst (R2); and (Congestiony >0) =
max_'{I;} > 1BW (R3).

R1 ensures that the ingress volume (I;) at any given time
is non-negative and does not exceed the bandwidth (BW).
R2 states that the sum of all I; within a time window T must
equal the total observed ingress TotalIngressy. R3 specifies
that if ECN-markings (Congestion) are detected during the
window T, there must be a burst event where at least one I;
exceeds half the bandwidth [14].

2.2 Where Prior Methods Fall Short

Enforcing logical rules, such as R1-R3, on ML models in a
way that leverages their complementary strengths without
putting them at odds is challenging. To better understand this
problem, we examine three fundamentally different strategies
explored in prior networking and ML research: (1) correcting
model outputs after inference, (2) teaching model rules at
training time, and (3) constraining the model decoding pro-
cess. We omit the discussion on prompt engineering for LLMs,
which is inherently ad-hoc and provides no guarantees.
Enforcing rules post-inference. A natural way of integrat-
ing logic rules in any ML task is to allow the generative model
to operate freely and then correct its output after generation
to satisfy these rules. The correction can be done using a
fast deterministic algorithm as in [24], an ILP as in [16] or a
full constraint solver (e.g., an SMT solver) as done in other
domains [5, 10, 45, 49].

We illustrate this post-inference in the lower part of Fig. 1a,
where the LLM’s invalid output is fed to an SMT solver (®)
together with R1-R3. We use an SMT solver because it is the
most general. The solver’s job is to modify the LLM’s output
to make it compliant with all provided rules. Unless provided
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Figure 1: Example of using an LLM for network telemetry imputation under
three rules R1-R3. (a) A pure LLM (blue frame) generates imputed samples
[Ip..I;] that violate fundamental networking rules such as R1-R3. We can
enforce logic post-inference (yellow frame), but not without hurting the
statistical fidelity of the imputed sample. (b) Instead of enforcing rules
post-inference, LeJIT invokes an SMT solver before every token generation
to filter out tokens, that if selected by the LLM, will result in rule violations,

effectively enforcing logic Just-In-Time.

with a specific optimization goal, the SMT solver would select
an arbitrary solution among all compliant ones, not the most
likely solution based on historical data. In other words, it will
not leverage the LLM’s learned distribution. One possible mit-
igation is to define a distance metric (fa) and ask the solver to
find a solution that satisfies the constraints while remaining as
close as possible to the original output of the LLM. While this
method is relatively straightforward in domains like vision,
where simple metrics like L2 distance often suffice, various
fields in networking are far more complex to compare. Seman-
tic meaning does not align with numerical distance [9, 23, 25],
making it challenging to define a meaningful metric for each
field of interest.

Teaching the model to follow rules. One way to encour-
age constraint satisfaction (R1-R3) is to embed rules into the
training process, typically by adding them to the loss func-
tion as regularization terms [3, 16, 26, 39, 54]. The model is
penalized for violations during training, with the hope that
it generalizes rule compliance at inference time.

Figure 2: Character-level tran-
sition system constructed by
LeJIT on the fly when imputing
I; and I;. LeJIT operates on tokens,
while the SMT solver on variables.
Carefully aligning them allows
LeJIT to be minimally invasive.

However, this approach has major drawbacks. It offers no
guarantee of constraint satisfaction during inference, and ap-
plies only to differentiable rules or their approximations—pro-
blematic in networking, where most rules are non-differentia-
ble. For instance, constraints R1-R3 require approximations
such as sigmoid functions or fuzzy logic [58] to be included
in the loss. Moreover, scaling to many constraints is difficult:
each rule must be manually encoded and weighted, which
complicates optimization [3, 26]. This is especially limiting in
domains like networking, where describing a single protocol
may involve hundreds of rules [19, 23, 28, 55]. Lastly, this
strategy lacks flexibility—any update to the rule set requires
retraining or fine-tuning, making it ill-suited for dynamic
environments.

Enforcing rules during decoding. The inability of ML and
LLM:s in particular to follow explicit rules has prompted the
ML research community to develop specialized techniques
to help them adhere to standardized output formats such as



JSON or knowledge triplets [2, 12, 13,34, 38,51]. Formally, con-
straint decoding cannot be used to enforce networking rules
because thereisno theoretical foundation for converting them
into compatible forms, such as individual automata or their
unions. In other words, constrained decoding typically filters
tokens based on immediate validity (like matching a gram-
mar), but it cannot perform arithmetic calculations or ensure
that a future token can satisfy the constraint model. Encoding
a constraint with )} as rule R2 into a decoding process would
mean tracking the running total and pruning any continuation
that makes the final sum impossible—essentially doing search
or backtracking. Even keeping track of a single such rule is far
beyond the capability of standard token-by-token decoding.

3 JUST-IN-TIME LOGIC ENFORCEMENT

Having shown that enforcing logic post-inference or during
training compromises either correctness (compliance with
rules) or fidelity (learned distributions), and constraint en-
coding is inadequate for network constraints, this section
presents LeJIT: a framework for Enforcing Logic Just-In-Time.
It intersects the LLM’s token-by-token inference to guide
it towards rule-compliant generation as shown in Fig. 1b.
While incorporating the SMT solver introduces some infer-
ence delay, it provides a valuable balance between neural and
symbolic reasoning. It maximizes the contribution of sym-
bolic reasoning by enabling the enforcement of arbitrary con-
straints, including arithmetic, non-differentiable, and global
ones, without placing additional burden on the operator. Same
as using an LLM, despite its training cost, LeJIT maximizes
the contribution of statistical learning.

To better understand how LeJIT works, let us revisit the ex-
ample of imputing [y, ...,Is] but now as generated with LeJIT’s
guidance. After generating a complete value (e.g., I, at @),
LeJIT invokes the solver with the provided constraints, instan-
tiated using the values generated so far. This dynamic partial
instantiation is crucial for determining which constraints are
relevant and what conditions must be met to ensure valid out-
put going forward. For example, suppose the LLM had already
produced values satisfying 3¢ < 3 : I; > 30; in that case, R3
would already be met and thus deactivated when determining
the feasible region for L. If no such value has been gener-
ated—as is the case in our example—the solver considers all
three rules when computing the valid range for I5 (@). Then,
Le]JIT invalidates all candidate values of I that fall outside
this feasible region (@), effectively guiding the model toward
valid generation paths. As a result, the resulting model output
I = 39 is always guaranteed to satisfy all constraints (@).
Moreover, in the presence of global aggregation constraints
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such as R2, this guided inference process often concludes with
only a single valid value remaining for the LLM to emit (@).

LeJIT provides a little guidance, but it goes a long way.
Over-constraining the LLM, for example, through partial com-
pletions or rigid templates, disrupts its natural reasoning path
and undermines its generative strength. Still, even a well-
trained model is highly likely to produce invalid outputs,
since a single incorrect token can render the entire sequence
invalid. As illustrated in Fig. 1a, the sequence becomes invalid
as early as the generation of I5. LeJIT strikes a balance by
filtering out rule-violating tokens at each generation step,
intervening only when the model is about to make a critical
mistake. This approach preserves the LLM’s natural behavior
while enforcing compliance with constraints.

LeJIT offers LLM-native generation with character-level
control. A key challenge in guiding an LLM with the solver is
the mismatch in granularity between the model’s generation
process and the solver’s reasoning. LLMs produce output to-
kenby token, and these tokens, defined by the tokenizer, are of-
ten opaque and lack semantic clarity. In contrast, SMT solvers
operate over well-defined, interpretable variables (such as
ingress bytes or ECN markings) expressed through explicit
logical constraints. This discrepancy makes it difficult to en-
force constraints without interfering with the LLM’s native
decoding behavior.

LeJIT addresses this issue by offering fine-grained, character-

level guidance, even when constraints are specified at the level
of semantic variables. To achieve this level of control, LeJIT
treats numeric values as plain text [36] and uses a character-
level tokenization scheme [44], generating each number digit
by digit. As shown in Fig. 2, LeJIT constructs a character-
level transition system[4, 46, 48] on the fly during inference.
Specifically, given a feasible range for a target variable as
determined by the solver, LeJIT builds an unlabeled transition
system where the current state reflects the last token selected
by the LLM, and the set of next states includes all tokens that
would maintain the value within the valid region.
A single LLM to “rule” them all? A key side benefit of
applying rules at inference time is that modifying the rules en-
ables repurposing an existing LLM—originally trained for one
task—for a different task, without retraining or fine-tuning.
For example, an LLM trained to impute fine-grained ingress
volumes can be readily adapted to generate synthetic coarse-
grained signals by simply changing the constraints: instead of
enforcing rules on fine-grained ingress values I; that rely on
access to coarse-grained signals, we can substitute rules that
capture relationships among the coarse-grained signals them-
selves. In our preliminary evaluation (§4.2), we demonstrate
that a generic LLM trained for telemetry imputation can, un-
der the guidance of LeJIT, achieve competitive performance
with SOTA specialized data generators.
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Figure 3: Rule violations in imputed time series (left) Figure 4: LeJIT improves both imputation accuracy (left) and
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rule compliance with a moderate runtime overhead.

4 EARLY RESULTS

As a proof of concept, we prototype and empirically evaluate
the effectiveness of LeJIT in experiments.

Dataset. We conduct all experiments using the data center
data released by Meta [14], following the same evaluation
setup as that of Zoom2Net [16].The test set contains over
30,000 data points.

Network rules. For the network telemetry imputation task
(§4.1), we use 55 rules which describe relationships between
coarse-grained signals (e.g., retransmissions) and fine-grained
ingress measurements I;. For the synthetic network data gen-
eration task (§4.2), we use 171 rules that capture relationships
among the coarse-grained signals themselves. Both sets of
rules were provided by the authors of NetNomos [23].
LeJIT implementation. We evaluate LeJIT on a less power-
ful LLM, namely, GPT-2 [35] We train GPT-2 from scratch
on the aforementioned datacenter dataset [14] and adopt
character-level tokenization [44] to support fine-grained con-
trol. Importantly, we repurpose the same trained model for
two distinct tasks by applying task-specific rule sets through
LeJIT, without any retraining or fine-tuning.

Baselines. We use the following baseline for both use cases:
(i) Vanilla GPT-2: The original GPT-2 model without Le]JIT;
(ii) Rejection Sampling: A naive approach that discards all
outputs violating network rules and repeatedly samples from
GPT-2 until a valid output is produced;(iii) “manual” rules:
Instead of using the automatically discovered rules from Net-
Nomos [23], this baseline enforces the four manually specified
rules (C4—C7) used by Zoom2Net [16]. For each use case, we
compare against SOTA task-specific frameworks. For net-
work measurement imputation (§4.1), we evaluate against
Zoom?2Net [16].For synthetic network data generation (§4.2),
we compare against a diverse set of SOTA data generators:
NetShare [56], EEWGAN-GP [17], CTGAN [53], TVAE [53],
and the GPT-2-based REaL.TabFormer [43].

logicenforcement, achieving on-parresults with Zoom2Net [16].

4.1 LeJIT for Network Telemetry Imputation

Finding 1: Unlike task-specific models, which (at best) com-
ply with a few hand-picked rules, LeJIT comply with all 55
rules, while achieving on-par performance in imputation
accuracy and downstream tasks.

We apply LeJIT on the task of network telemetry imputa-
tion and evaluate its effectiveness in enforcing network rules,
overhead and accuracy.

Rule violation. Fig. 3 (left) reports rule violation rates. Vanilla
GPT-2, lacking any constraints, shows the highest violation
rate at 18%. Zoom2Net, despite using a constraint enforce-
ment module (CEM), relies on limited and soft manual rules,
resulting in over 7% violations—similar to LeJIT when only
manual rules are used. With the full set of NetNomos rules,
LeJIT reduces violations to 0%.

Runtime overhead. As shown in Fig. 3 (right), rejection sam-
pling achieves perfect compliance but takes over two days,
as it repeatedly discards invalid outputs without guiding the
model. In contrast, LeJIT completes over 30K imputations in
5 hours by guiding inference directly. Zoom2net’s runtime
performance is not directly comparable because it enforces
a fraction of the rules. While LeJIT incurs significant over-
head compared to unguided GPT-2, our prototype remains
unoptimized and offers opportunities for future speedups (§5).
Imputation accuracy. LeJIT with manual rules substantially
improves GPT-2’s accuracy (Fig. 4, left), though it still trails
Zoom2Net due to limited domain coverage. Rejection sam-
pling hurts accuracy by distorting the LLM’s distribution,
suppressing near-correct outputs and forcing sampling from
unrelated regions. With full NetNomos rules, LeJIT matches
and even surpasses Zoom2Net on EMD and p99 accuracy,
while also improving burst analysis metrics across the board.
When guided by LeJIT, GPT-2 outperforms Zoom2Net on all
metrics except Burst Position. These results show that LeJIT
enforces rules effectively at inference time, with performance
improving as rule quality increases. The remaining gap on
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time-sensitive metrics (e.g., autocorrelation, Burst Position)
likely stems from GPT-2’s general-purpose architecture and
the limited temporal expressiveness of the extracted rules
by NetNomos [23]. Advancing methods for learning richer
temporal constraints remains a key direction for future work
and will unlock more benefits for LeJIT.

4.2 LeJIT for Network Data Synthesis

Finding 2: LeJIT preserves, and in some cases improves,
the statistical fidelity of synthetic time series generated by
tailored generators, while ensuring the time series follow
hundreds of rules (unlike tailored data generators). Impor-
tantly, LeJIT’s underlying model is not task-specific.

We now apply LeJIT to the task of synthetic data generation
and evaluate its effectiveness in enforcing network rules. Un-
like the imputation, this generation task is unconditional: the
models are not provided with any input signals (e.g., prompts
no longer fed into GPT-2), and the data they generate depends
solely on the learned input distributions.

As shown in Fig. 5, we compare various GPT-2 variants
(vanilla, with rejection sampling, and with LeJIT’s guidance)
against five aforementioned SOTA data generators. From each
model, we draw 30K samples and compute the Jensen—-Shan-
non divergence (JSD) with respect to the original data dis-
tribution. The results demonstrate that LeJIT preserves the
generative behavior of the base LLM while enforcing all 171
network rules. Rejection sampling significantly distorts the
learned distribution, while the other data generators not only
violate a large number of network rules [23], but also fail to
offer clear advantages in approximating the target distribu-
tion. In contrast, LeJIT enables the base LLM to outperform its
vanilla counterpart in most cases. This result suggests that em-
bedding domain knowledge through inference can improve
the quality of generated data distributions.
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5 RESEARCH AGENDA

Logic-Guided Foundation Models for Networking. We
envision a future where one LLM can power a broad range
of networking tasks (e.g., configuration generation, security
policy synthesis) simply by swapping in task-specific logic
rules. Such a foundational, logic-guided model for network-
ing would unify currently siloed ML efforts and vastly reduce
engineering overhead [52]. Key questions include: (1) how to
symbolically handle non-numeric or structured outputs (e.g.,
tables, topology graphs) in alanguage-based model, (2) how to
tokenize heterogeneous networking knowledge in a way that
does not create misalignment between the model output and
symbolic rules, and (3) how to efficiently switch or compose
rule sets for different tasks on the fly. Success in this direction
would be transformative—instead of maintaining bespoke ML
solutions for every networking problem, operators could rely
on a single powerful model that is made context-specific and
trustworthy via JIT logic “plug-ins.”

Constraint Learning and Solver Co-Design To improve
JIT logic enforcement, two key directions are (1) improving
LLM-solver integration and (2) improving the rule sets them-
selves. Current implementations rely on general-purpose
SMT solvers external to the LLM, introducing significant infer-
ence delays [57]. Future work should enable tighter coupling
through token-level solvers, solver-aware decoding paths, or
hybrid neural-symbolic architectures, making JIT enforce-
ment feasible for latency-sensitive applications. In parallel,
network rules—which are currently static and manually de-
fined—must become more expressive (e.g., better support for
temporal logic), data-driven, and adaptable. Systems could
learn constraints from logs, refine them over time, or co-train
them with model outputs.

Generalizing LeJIT beyond LLMs. While LeJIT currently
targets autoregressive language models, many core network-
ing tasks (e.g., traffic forecasting, anomaly detection, routing,
and protocol simulation) rely on non-language models like
time-series regressors, GNNs, and diffusion models. However,
this generalization is non-trivial. Unlike token-based LLMs,
these models often produce continuous, high-dimensional
outputs without an inherent notion of “next-step,” making it
unclear how to insert constraint checks or prune invalid pre-
dictions. One promising direction is to rethink the inference
process itself in networking as a constrained optimization
problem: for instance, projecting a model’s unconstrained
output onto the nearest point in the rule-compliant space via
differentiable solvers [1, 32, 47] or gradient-based corrections.
Similarly, generative models could be trained to emit semantic
concepts [30, 33] that are easier to steer via symbolic logic,
then decoded in a constraint-aware manner.
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